University of Oregon

Kelly Sutherland

Assistant Professor of Biology


Mail:   5289 University of Oregon
Eugene, OR, 97403

office: 473 Onyx Bridge
Phone:   (541) 346-8783

Graduate Students

Keats Conley, Environmental Studies – MSc candidate

Samantha Zeman, Biology – MSc candidate

Undergraduate Students

Susan Brush, Marine Biology

Clare Chisholm, Environmental Studies


Bioinspired Design, Spring 2012
Marine Biology, Winter 2012

Selected Publications

Pitt, K. A., Duarte, C. M., Lucas, C. H., Sutherland, K. R., Condon, R. H., Mianzan, H.,  Purcell, J. E., Robinson, K. L., Uye, S. (in review)  Gelatinous body plans provide allometric advantages beyond low carbon content.

Condon, R. H., Duarte, C. M., Pitt, K. A., Robinson, K. L., Lucas, C. H., Sutherland, K. R., Mianzan, H., Bogeberg, M., Purcell, J. E., Decker, M. B., Uye, S., Madin, L. M., Brodeur, R. D., Haddock, S. H. D., Malej, A.,  Parry, G. D., Eriksen, E., Quiñones, J., Acha, M., Harvey, M, Arthur, J. M., Graham, W. M. (2012) Recurrent jellyfish blooms are a consequence of global oscillations. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1210920110. PDF

Prairie, J. C., Sutherland, K. R., Nickols, K. J. and Kaltenberg, A. M. (2012) Biophysical interactions in the plankton: A cross-scale review. Limnology & Oceanography: Fluids & Environments 2: 121-145. PDF

Duarte, C. M., Pitt, C. A., Lucas, C. H., Purcell, J. E., Uye, S., Robinson, K. L., Brotz, L., Decker, M. B., Sutherland, K. R., Malej, A., Madin, L. M., Mianzan, H., Gili, J.-M., Fuentes, V., Atienza, D., Pages, F., Breitburg, D., Malek, J., Graham, M.,  and Condon, R. (2012) Is global ocean sprawl a cause of jellyfish blooms? Frontiers in Ecology and the Environment. doi:10.1890/110246.

Condon, R. H. , Graham, W. M., Duarte, C. M., Pitt, C. A., Lucas, C. H., Haddock, S. H. D., Sutherland, K. R., Robinson, K. L., Dawson, M. N., Decker, M. B., Mills, C. E., Purcell, J. E., Malej, A., Mianzan, H., Uye, S., Gelcich, S., Madin, L. M. (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. BioScience 62: 160- 169. PDF

Sutherland, K. R., Dabiri, J. O. and Koehl, M. A. R. (2011) Simultaneous field measurements of ostracod swimming behavior and background flow. Limnology & Oceanography: Fluids & Environments 1: 135- 146. PDF

Sutherland, K. R., Beet, A. R. and Solow, A. R. (2010) Re-analysis of a salp population time-series. Marine Ecology Progress Series 418: 147-150. PDF

Sutherland, K. R., Madin, L.P. and Stocker, R (2010) Filtration of submicrometer particles by pelagic tunicates. Proceedings of the National Academy of Sciences 34: 15129-15134. PDF

Sutherland, K. R. and Madin, L. P. (2010) Jet wake structure and swimming performance of pelagic tunicates. Journal of Experimental Biology 213: 2967-2975. PDF

Sutherland, K. R. and Madin, L.M. (2010) A comparison of filtration rates among pelagic tunicates using kinematic measurements. Marine Biology 157: 755-764. PDF

Rakow (Sutherland), K.C. and Graham, W.M. (2006) Orientation and swimming mechanics by the scyphomedusa Aurelia sp. in shear flow. Limnology and Oceanography 51(2) 1097-1106. PDF

Popular publications

Sutherland, K.R. (2009) Dye sheds light on jet-propelled salps. Oceanus Magazine 47 (3) 20-22.  Article link    YouTube video


Research in the Sutherland lab is at the intersection of biology and physics: our goal is gain a mechanistic understanding of how marine organisms interact with one another and within their fluid environment.

We use a variety of tools including in situ video, kinematic analysis, and flow visualization to understand how the environment is experienced at the organismal scale. These observations can be related to smaller-scale physiological problems or to larger-scale population patterns and food-web dynamics.

Students working in the lab use innovative techniques and a mechanistic approach to investigate how organisms function in the marine environment, and more broadly, to understand ecological roles and evolutionary relationships.  Students work either on the Eugene campus in the Institute of Ecology and Evolution or at the Oregon Institute of Marine Biology in Charleston.

We use novel technologies but much of our equipment is relatively inexpensive and portable, which enables us to work locally, off the Pacific Northwest coast, as well as in remote locations.